Abstract

Some Rhizobium bacteria have H(2)-uptake (Hup) systems that oxidize H(2) evolved from nitrogenase in leguminous root nodules. Pea (Pisum sativum L.) cultivars ;JI1205' and ;Alaska' produce high Hup (Hup(++)) and moderate Hup (Hup(+)) phenotypes, respectively, in Rhizobium leguminosarum 128C53. The physiological significance and biochemical basis of this host plant genetic effect are unknown. The purpose of this investigation was to advance basic Hup studies by developing nearly isogenic lines of peas that alter Hup phenotypes in R. leguminosarum strains containing hup genes. Eight pairs of nearly isogenic pea lines that produce Hup(++) and Hup(+) phenotypes in R. leguminosarum 128C53 were identified in 173 F(2)-derived F(6) families produced from crosses between JI1205 and Alaska. Tests with the pea isolines and three strains of hup-containing R. leguminosarum showed that the isolines altered Hup activity significantly (P </= 0.05) in 19 of 24 symbiotic combinations. Analyses of Hup phenotypes in F(6) families, the F(1) population, and two backcrosses suggested involvement of a single genetic locus. Three of the eight pairs of isolines were identified as being suitable for physiological studies, because the two lines in each pair showed similar growth, N assimilation, and flowering traits under nonsymbiotic conditions. Tests of those lines under N(2)-dependent conditions with isogenic Hup(+) and negligible Hup (Hup(-)) mutants of R. leguminosarum 128C53 showed that, in symbioses with Hup(+) rhizobia, two out of three Hup(++) pea lines decreased N(2) fixation relative to Hup(+) peas. In one of those cases, however, the Hup(++) plant line also decreased fixation by Hup(-) rhizobia. When results were averaged across all rhizobia tested, Hup(+) pea isolines had 8.2% higher dry weight (P </= 0.05) and fixed 12.6% more N(2) (P </= 0.05) than Hup(++) isolines. Pea lines described here may help identify host plant factors that influence rhizobial Hup activity and should assist in clarifying how Hup systems influence other physiological processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call