Abstract

AbstractThe semiempirical MO method SINDO1 is extended to second‐row atoms from sodium to chlorine. The basis set has a provision to include d orbitals. To retain rotational invariance in a d orbital set, a number of hybrid integrals has to be included that invalidate the zero differential overlap (ZDO) assumption even in a symmetrically orthogonalized basis set. The inclusion of d orbitals rendered the set‐up of integral calculation of the original INDO method impractical. Instead of one subroutine for each integral, all explicitly calculated integrals (overlap, core, electronic repulsion) are now contained in a single subroutine under unifying aspects. The parametrization scheme includes pseudopotentials and adjusts the total energy under inclusion of zero point energies to experimental heats of formation of ground states. The vibrational frequencies for the calculation of zero point energies are obtained from calculated force constants and G matrix elements by a scaling procedure. The results for geometries, energies, and dipole moments are compared with MNDO data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.