Abstract

We report herein the design of a solid self-microemulsifying drug delivery system (SMEDDS) of vitamin D3 for augmentation of its solubility and dissolution. The studies employed a 32 full factorial design by employing JMP 13.2.1, software for preparation of liquid SMEDDS. Further, the prediction profiler was utilized to optimized liquid SMEDDS-Vit.D3 (OF) formulation. The solidification of liquid SMEDDS-Vit.D3 formulation was carried out by physical adsorption over Neusilin US2 and Aerosil 200 carriers. Solid-state evaluation of SMEDDS-Vit.D3 suggested the transformation of crystalline to amorphous form of Vit.D3 which is responsible for imparting more aqueous solubility and thus enhancement in dissolution behaviour. The investigation of flow behaviours viz. flow function (FF) and effective angle of wall friction (EAWF) of solid SMEDDS-Vit.D3 was performed using powder flow tester. Solid SMEDDS-Vit.D3 prepared using Neusilin US2 showed good flow behaviour and hence was developed into tablets. The tablets showed good quality control parameters as per pharmacopeial standards. The in vitro dissolution studies demonstrated more dissolution of Vit.D3 in SMEDDS (liquid, solid, and tablet) when compared to the unprocessed drug. The shelf life (T90) of tablets was reported to be 28.12 months suggesting excellent stability of Vit.D3 in solid SMEDDS. In nutshell, our research works explore the utilization of SMEDDS for the oral delivery of Vit.D3 to gain maximum health-related benefits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call