Abstract

Isolation and actuation voltages are important parameters in micro-electro-mechanical switches. These parameters can be destroyed by the effect of creating bulge and erosion in the surface of the beam. In this paper, a fabrication method is proposed to create a smooth and flat beam. Additionally, using two short high impedance transmission lines, the destructive effects on the input/output matching have been reduced. S-parameters and mechanical parameters of the proposed switch are calculated by the network analyzer and laser Doppler vibrometer. According to the results obtained from the proposed switch in the C–K band, the return loss, which is less than − 20 dB, and the highest isolation value, which is equal to − 20 dB, occur at the frequency of 21 GHz. Furthermore, the insertion loss is better than − 1 dB in the full frequency band, which is very desirable. The actuation voltage and resonance frequency were obtained at 18 V and 164 kHz, respectively. Finally, four steps are proposed to optimize the actuation voltage, isolation, stress and switching time, which results in reducing the actuation voltage by 37% and the isolation will increase by 46%. Maximum stress in the initial state is 25 MPa, and decreases to 10 MPa after optimization, which increases the lifetime of the switch.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call