Abstract

Objective: The purpose of present research was to develop and statistically optimize nitrendipine nanoemulsion gel for transdermal delivery using box-behnken statistical design.Method: The nanoemulsion formulations bearing nitrendipine were prepared by application of ternary phase diagram and spontaneous emulsification method. Box-behnken design was employed for the optimization of nitrendipine loaded nanoemulsion. The independent variables were oil, surfactant and co-surfactant while globule size, drug content and zeta potential were dependent variables. The optimized nanoemulsion formulation was incorporated into gel and evaluated for in-vitro release, ex-vivo permeation studies, confocal laser scanning microscopy, skin irritation and histopathological studies.Results: The optimized formulation through box-behnken statistical design showed globule size of 20.43 ± 1.50 nm, drug content of 97.05 ± 1.77% and zeta potential of −15.45 ± 0.35 mV. The ex-vivo study confirmed the enhanced delivery of nitrendipine from nanoemulsion gel than compare to drug solution by virtue of better permeation and solubility. Nanoemulsion gel was proved significantly superior by confocal laser scanning microscopy for satisfactory permeation and distribution of gel, deep into the rat skin. The optimized gel was found with no allergic dermal effects and was proved safe by histopathological studies for transdermal application.Conclusions: Results reveals that developed nitrendipine nanoemulsion gel overcomes the limitation of low penetration and accentuate permeation through albino Wistar rat skin. It was concluded that nanoemulsion gel could be utilized as a potential carrier for transdermal delivery of nitrendipine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call