Abstract
Objective The objective of the present investigation was to develop a stable and optimized drug-loaded nanoemulsion system using the phase inversion temperature (PIT) method. Significance The PIT method has been widely used for the development of food-grade nanoemulsion systems. For the first time, a simple and cost-effective, PIT method was used for the development of a stable drug-loaded nanoemulsion system. Methods Box–Behnken experimental design was used for the development of an optimized drug-loaded nanoemulsion system by the PIT method. The independent variables were optimized for responses by using the desirability function. The hydrophobic drug, benidipine was used as a modal drug. Optimized oil phase (blend of long-chain triglycerides oil, medium-chain triglycerides oil and essential oil) was used for the development of oil in water (O/W) nanoemulsion system. Results Optimum nanoemulsion formulation was stable, transparent and contained 50% of oil to surfactant percentage with a droplet size of 96.57 ± 1.61 nm. The optimum formulation also showed higher in-vitro drug diffusion from dialysis membrane as compared to the marketed formulation. Nanoemulsion droplets were observed as spherical in the transmission electron microscopy (TEM) images. Box-Behnken statistical analysis revealed that all the independent variables had a significant impact on characteristics of nanoemulsion and the predicated value of independent variables was found to be valid. Conclusion It was concluded that the PIT method produces a stable and efficient drug-loaded nanoemulsion system. Further, the optimized oil phase can be used as an alternative to costly, commercial medium-chain triglycerides (MCT) oils, for the development of a stable nanoemulsion system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.