Abstract

TRF2 is a telomere associated protein which plays an important role in telomere maintenance. Knockdown of TRF2 can cause chromosomal end to end fusions and induce DNA damage responses. TRF2 exerts its functions partially by recruiting a number of accessory proteins through its TRF homology domain (TRFH), therefore identification of small molecular compounds which can bind to the TRFH domain of TRF2 and block the interactions of TRF2 with its associated proteins is important to elucidate the molecular mechanism of these protein-protein interactions. Development of robust and sensitive screening and evaluation assays is critical to the identification of TRF2 inhibitors, in this paper we reported the development and optimization of a cascade of screening and binding affinity evaluation assays, including a competitive FP (Fluorescence Polarization) assay utilized in our previous research, and two novel label-free DSF (Differential Scanning Fluorescence) and BLI (Biolayer Interferometry) assays. A previously identified TRF2 inhibitor TRF2-27 was used as an internal reference compound and evaluated in all of these assays. According to the results, DSF assay is not suitable for TRF2 screening because of the low ΔTm, while the optimized labeled-free BLI assay was demonstrated to be an accurate and reproducible assay for TRF2 inhibitor screening and characterization.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call