Abstract

A conventional hard disk drive (HDD) spindle motor has a pulling plate to generate the axial magnetic force. However, the pulling plate consumes significant amount of iron loss due to the alternating magnetic field on the pulling plate. We propose the new design of a HDD spindle motor with pulling magnet to generate the pre-load as well as to eliminate the iron loss of the pulling plate. We also develop an optimal design methodology to minimize iron and copper losses from the spindle motor of a computer HDD while maintaining the same level of torque ripple and pulling force. The new design is optimized by the developed optimal design methodology. A metamodel is constructed from the three-dimensional finite element analysis of the magnetic field and the meta-modeling techniques, and the accuracies of the metamodels are discussed. The proposed optimal design problem is solved by the progressive quadratic approximation method. The proposed design reduces the electrical loss of the HDD spindle motor by 30.42 % while maintaining the same level of torque ripple and pulling force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.