Abstract

AbstractKetone functionalization is a cornerstone of organic synthesis. Herein, we describe the development of an intermolecular C−H alkenylation of enamides with the feedstock chemical vinyl acetate to access diverse functionalized ketones. Enamides derived from various cyclic and acyclic ketones reacted efficiently, and a number of sensitive functional groups were tolerated. In this iridium‐catalyzed transformation, two structurally and electronically similar alkenes—enamide and vinyl acetate—underwent selective cross‐coupling through C−H activation. No reaction partner was used in large excess. The reaction is also pH‐ and redox‐neutral with HOAc as the only stoichiometric by‐product. Detailed experimental and computational studies revealed a reaction mechanism involving 1,2‐Ir‐C migratory insertion followed by syn‐β‐acetoxy elimination, which is different from that of previous vinyl acetate mediated C−H activation reactions. Finally, the alkenylation product can serve as a versatile intermediate to deliver a variety of structurally modified ketones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call