Abstract
Collagen gels are considered a promising biomaterial for the manufacturing of tissue engineering scaffolds, however, their mechanical properties often need to be improved to enable them to provide enough mechanical support during the course of tissue regeneration process. In this paper, we present a simple self-compression technique for the improvement of the mechanical properties of collagen gels, identified by the fitting of bespoke biphasic finite element models. Radially-confined highly hydrated gels were allowed to self-compress for 18h, expelling fluid, and which were subsequently subjected to unconfined ramp-hold compression. Gels, initially of 0.2%, 0.3% and 0.4% (w/v) collagen and 13mm thickness, transformed to 2.9±0.2%, 3.2±0.3% and 3.6±0.1% (w/w) collagen and 0.45±0.06mm, 0.69±0.04mm and 0.99±0.07mm thickness. Young's moduli of the compressed gels did not increase with increasing collagen fibril density, whilst zero-strain hydraulic permeability significantly decreased from 51 to 21mm4/Ns. The work demonstrates that biphasic theory, applied to unconfined compression, is a highly appropriate paradigm to mechanically characterise concentrated collagen gels and that confined compression of highly hydrated gels should be further investigated to enhance gel mechanical performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.