Abstract

Linkage maps developed from known-function genes can be valuable in the candidate gene mapping approach. A set of 121 expressed sequence tagged site (E-STS) primer pairs were tested on a framework genetic linkage map of apple (Malus x domestica Borkh.) constructed using simple sequence repeats (SSRs) and randomly amplified polymorphic DNA (RAPD) markers. These known-function gene markers, E-STSs, were supplemented by markers for resistance gene analogues (RGAs), designed based on conserved motifs in all characterized resistance genes isolated from plant species. A total of 229 markers, including 46 apple E-STSs, 8 RGAs, 85 SSRs from apple and peach, and 88 RAPDs, were assigned to 17 linkage groups covering 832 cM of the apple genome, based on 52 individuals originating from the cross 'Antonovka debnicka' (Q12-4) x 'Summerred'. Clusters of E-STS and RGA loci were located in linkage groups previously identified to carry resistance genes, some of which confer resistance to apple scab disease caused by Venturia inaequalis (Cke.) Wint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.