Abstract

Achieving bright, reliable, robust, and stable probes for in vivo imaging is becoming extremely urgent for the cancer imaging research community. To date very few works have reported on elucidating in the varied and chemically complex biological milieu. The authors report detailed investigations of the synthesis of near‐infrared, water dispersive, strongly luminescent, and highly stable PbS/CdS/ZnS core/shell/shell quantum dots (QDs). These QDs are extremely stable, they could keep their initial morphology, dispersion status, and photoluminescence (PL) in phosphate buffered saline buffer for as long as 14 months. The QDs also show excellent photostability and could keep ≈80% of their initial PL intensity after 1 h continuous, strong UV illumination. More interestingly, they show negligible toxicity to cultured cells even at high QDs concentration. Given these outstanding properties, the QDs are explored for in vivo, tumor imaging in mice. With one order of magnitude lower QD concentration (0.04 mg mL–1), significantly weaker laser intensity (0.04 W cm–2 vs ≈1 W cm–2), and considerably shorter signal integration time (≤1 ms vs hundreds of ms) as compared to the best reported rare earth doped nanoparticles, the QDs show high emission intensity even at injection depth of ≈2.5 mm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.