Abstract
Thin-film composite membranes (TFC) obtained by the formation of a selective layer on a porous membrane-substrate via interfacial polymerization (IP) are indispensable for separation procedures in reverse osmosis, nanofiltration, pervaporation, and gas separation. Achieving high selectivity and permeability for TFC membranes is still one of the main challenges in membrane science and technology. This study focuses on the development of thin film nanocomposite (TFN) membranes with a hierarchically structured polyamide (PA)/chitosan succinate (ChS) selective layer embedded with a metal–organic framework of iron 1,3,5-benzenetricarboxylate (Fe-BTC) for the enhanced pervaporation dehydration of isopropanol. The aim of this work was to study the effect of Fe-BTC incorporation into the ChS interlayer and PA selective layer, obtained via IP, on the structure, properties, and performance of pervaporation TFN membranes. The structure and hydrophilicity of the developed TFN membranes were investigated using scanning electron microscopy (SEM) and atomic force microscopy (AFM), along with water contact angle measurements. The developed TFN membranes were studied in the pervaporation dehydration of isopropanol (12–30 wt % water). It was found that incorporation of Fe-BTC into the ChS interlayer yielded the formation of a smoother, more uniform, and defect-free PA ultrathin selective layer via IP, due to the amorpho-crystalline structure of particles serving as the amine storage reservoir and led to an increase in membrane selectivity toward water, and a slight decrease in permeation flux compared to the ChS interlayered TFC membranes. The best pervaporation performance was demonstrated by the TFN membrane with a ChS-Fe-BTC interlayer and the addition of 0.03 wt % Fe-BTC in the PA layer, yielding a permeation flux of 197–826 g·m−2·h−1 and 98.50–99.99 wt % water in the permeate, in the pervaporation separation of isopropanol/water mixtures (12–30 wt % water).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.