Abstract

Chalcogenide glass fibers based on sulphide, selenide, telluride, and their rare earth doped compositions are being actively pursued both at the Naval Research Laboratory in Washington, D.C. (NRL) and worldwide. Great strides have been made in reducing optical losses using improved chem ical purification techniques, but further improvements are needed in both purification and fiberization technology to attain the theoretical optical losses. Despite this, current singlemode and multimode chalcogenide glass fibers are enabling numerous applications. Some of these applications include laser power delivery, chemical sensing, imaging, scanning near field microscopy spectroscopy, fiber infrared (IR) sources lasers, amplifiers, and optical switches. The authors assert that the research and development of chalcogenide glasses will grow in the foreseeable future, especially with respect to improvements the optical quality of the fibers and the performance of the fibers in existing future applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.