Abstract

Hypothyroidism is a chronic condition combated by a daily oral supplementation of levothyroxine. In addition to the need for frequent dosing, oral administration may result in variable absorption of the drug leading to a failure in achieving normal thyroid function. Therefore, the development of a long-acting injectable system capable of delivering the drug is necessary. This work was aimed at developing sustained release microparticles loaded with levothyroxine. The microparticles were produced through the emulsification-solvent evaporation method using 2 grades of biocompatible and biodegradable polyesters: poly(ᴅ,ʟ-lactide-co-glycolide) (PLGA) and poly(ᴅ,ʟ-lactide) (PLA). Both polymers produced microparticles with very similar sizes (1.9 µm) and zeta potential values (around -22.0 mV). However, PLA microparticles had a significantly higher drug loading (6.1% vs. 4.4%, respectively) and encapsulation efficiency (36.8%, vs. 26.1%, respectively) when compared to PLGA counterparts. While both types of microparticles displayed a biphasic release pattern in vitro, a slower rate of release was observed with PLA microparticles. Moreover, a similar biphasic release pattern was found in vivo, with an initial phase of rapid release followed by a slower phase in the subsequent 10 days. These results indicate the possibility of developing levothyroxine loaded polyester microparticles as a potential long-acting thyroid hormone replacement therapy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call