Abstract

Recently, poly(acrylic acid)-cysteine (PAA-cys) based formulations have shown to modulate vitamin B12 absorption across Caco-2 cells monolayers and rat intestinal mucosa. The aim of the present study was to provide a proof-of-principle for a delivery system based on PAA-cys in vivo by administering vitamin B12 to Sprague Dawley rats. In vitro, the permeation enhancing effect of unmodified and thiolated PAA was evaluated using rat intestinal mucosa mounted on Ussing type chambers and was compared to that of verapamil and reduced glutathione (GSH). Vitamin B12 transport in the presence of 0.5% (m/v) PAA-cys was 3.96-fold improved compared to buffer, while 91.5% and 56.5% increased compared to verapamil and GSH, respectively. In vivo, the oral administration of minitablets based on 0.5mg vitamin B12 with 4.5mg PAA or PAA-cys resulted in a significant improvement of vitamin B12 absolute bioavailability. The area under the serum concentration–time curve (AUC0–8) of vitamin B12 after administration of PAA and PAA-cys minitablets was 1.74-fold and 2.92-fold higher in comparison with oral solution, respectively. Thiolated formulations provided an absolute bioavailability of 0.89%. According to the achieved results, PAA-cys can be considered a valuable tool for improving the oral bioavailability of vitamin B12.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call