Abstract

Lenvatinib (LEN) is a first-line therapy for patients with hepatocellular carcinoma (HCC), but has a larger adverse effect profile. In this study, we developed a liposome with drug-carrying function and magnetic resonance imaging (MRI) imaging function to investigate the targeted drug-carrying function and MRI tracing ability of liposome for HCC. Magnetic nano-liposomes (MNL) with dual targeting function of epithelial cell adhesion molecule (EpCAM) and vimentin and capable of encapsulating LEN drugs were prepared. The characterization performance, drug loading efficiency and cytotoxicity of EpCAM/vimentin-LEN-MNL were tested, and the dual-targeting slow release drug loading function and MRI tracing ability were investigated in cellular and animal models. EpCAM/vimentin-LEN-MNL has a mean particle size of 218.37 ± 5.13nm and a mean potential of 32.86 ± 4.62mV, and is spherical in shape and can be uniformly dispersed in solution. The encapsulation rate was 92.66 ± 0.73% and the drug loading rate was 9.35 ± 0.16%. It has low cytotoxicity, can effectively inhibit HCC cell proliferation and promote HCC cell apoptosis, and has specific targeting function and MRI tracing ability for HCC cells. In this study, an HCC-specific dual-targeted sustained-release drug delivery liposome with dual-targeted recognition and sensitive MRI tracer was successfully prepared, which provides an important scientific basis for maximizing the multiple effects of nano-carriers in tumor diagnosis and treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.