Abstract
Data analysis and their application are the unavoidable factors in the activities analyses in health care. Unfortunately, the acquisition of data from large available medical databases is a complex process and requires deep knowledge of computer science and especially knowledge of tools for data management. According to the European General Data Protection Regulation, the problem becomes much more complex. Recognizing these problems and difficulties, we have developed a Data Science Learning Platform (DSLP) that primarily targets practitioners and researchers but also the computer science students. Using our proposed tool chain together with the developed graphical user interface, data scientists and research physicians will be able to use available medical databases, apply and analyze different anonymization methods, analyze data according to the patient's risk and quickly formulate new studies to target a disease in a complex data model. This article presents a clinical research discovery toolbox that implements and demonstrates tools for data anonymization, patient data visualization, NLP-tools for guideline search and data science learning tools.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.