Abstract

Abstract In this paper, we address a long-standing open problem in stochastic simulation: construction of a random walk on spheres (RWS) algorithm for solving a system of elasticity equations, known as the Lamé equation. Many attempts to generalize the classic probabilistic representations like the Kac formula for parabolic and scalar elliptic equations failed. A different approach based on a branching random walk on spheres (BRWS) introduced in our paper of 1995 [K. K. Sabelfeld and D. Talay, Integral formulation of the boundary value problems and the method of random walk on spheres, Monte Carlo Methods Appl. 1 1995, 1, 1–34] made little progress in solving this problem. In the present study, we further improve the BRWS algorithm by a special implementation of a branching anisotropic random walk on spheres process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.