Abstract

African swine fever is an acute and highly contagious infectious disease with a mortality rate of up to 100%. The lack of commercial vaccines and drugs is a serious economic threat to the global pig industry. Cell-mediated immunity plays an essential role in protection against viral infection. We previously reported the rational design of a T-cell-activating thermostable scaffold (RPT) for antigen delivery and improved cellular immunity. We conjugated antigens P30, P54, P72, CD2 V, and CP312R to RPT, using a SpyCatcher/SpyTag covalent attachment strategy to construct nanovaccines (multiantigens-RPT). Multiantigens-RPT exhibited significantly higher thermal, storage, and freeze-thaw stability. The specific antibodies IgG and IgG2a of the multiantigen-RPT-immunized were higher than the antigens cocktail-immunized by approximately 10-100 times. ELISpot demonstrated that more IFN-γ-secreting cells were produced by the multiantigen-RPT-immunized than by the antigens cocktail-immunized. Delivery of the multiantigen nanovaccine by a T-cell-activating scaffold induced strong humoral and cellular immune responses in mice and pigs and is a potentially useful candidate vaccine for the African swine fever virus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call