Abstract

AbstractMilled carbon fiber‐reinforced polysulfide‐modified epoxy gradient composites have been developed. Density and hardness increases with the increase of carbon fiber content in the direction of centrifugal force, which shows the formation of gradient structure in the composite. High stress abrasive wear test was conducted on the gradient composites by using a Suga Abrasion Wear Tester. Abrasive wear rate reduced on increase of milled carbon fiber content from 0.15 to 1.66 vol%. Reduction in abrasive wear rate in milled carbon fiber‐reinforced epoxy gradient composites has been attributed to the increase of hardness, presence of random milled fibers, and debris of composite materials, which gave resistance and reduced wear rate. There is a small decrease in specific wear rate on adding 0.15 vol% milled carbon fibers. Further decrease of specific wear rate is observed on adding 0.45 vol% milled carbon fibers. After 3 N load, there is a decrease in specific wear rate behavior on adding 0.45 vol% carbon fibers, which further decreases on adding 0.60 vol% of carbon fibers. There is a remarkable decrease in specific wear rate up to 5 N load for 1.66 vol% milled carbon fiber‐reinforced composite. Reduction in specific wear rate on adding milled carbon fibers is based on the formation of debris, which remained intact in their respective positions due to the interfacial adhesion between milled carbon fibers and epoxy resin. POLYM. COMPOS., 2008. © 2008 Society of Plastics Engineers

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.