Abstract

A guard limiter concept with graphite brazed to a stainless steel base plate has been proposed in FER. The bonding of graphite and stainless steel was successfully done by vacuum brazing with an interlayer material of Mo or Cu. Mechanical strengths were measured by tensile and shear tests. Fatigue tests up to approximately 107 cycles were done. Heat load experiments were performed with electron beam equipment. Brazed materials with a Mo interlayer were subjected to a heat load up to 60 MJ/m2 (6 kJ/cm2). No complete failures were observed in every condition, but cracks were generated by heat loads greater than 40 MJ/m2 (4 kJ/cm2). The failures were generated in graphite near to the interface. Mechanical strength and thermal shock resistance were improved by the change from 1 to 3 mm in thickness of Mo interlayer. Residual stresses due to brazing and cool-down were analyzed with an FEM code, and the results were compared with strain measurements on the test specimen. A comparison study on interlayer materials is continuing, and heat load cycle tests are now underway for 10 MJ/m2(1 kJ/cm2), which is a target value based on the FER design.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.