Abstract

With the facilitated development of highly automated driving functions and automated vehicles, the need for advanced testing techniques also arose. With a near-infinite number of potential traffic scenarios, vehicles have to drive an increased number of test kilometers during development, which would be very difficult to achieve with currently utilized conventional testing methods. State-of-the-Art testing technologies such as Vehicle-in-the-Loop (ViL) or Scenario-in-the-Loop (SciL) can provide a long-term solution; however, validation of these complex systems should also be addressed. ViL and SciL technologies provide real-time control and measurement with multiple participants; however, they require enormous computational capacity and low-latency communication to provide comparable results with real-world testing. 5G (fifth-generation wireless) communication and Edge computing can aid in fulfilling these needs, although appropriate implementation should also be tested. In the current paper, a realized control model based on the SciL architecture was presented that was developed with real-world testing data and validated utilizing co-simulation and digital twin techniques. The model was established in Simcenter Prescan© connected to MATLAB Simulink® and validated using IPG CarMaker®, which was used to feed the simulation with the necessary input data to replace the real-world testing data. The aim of the current paper was to introduce steps of the development process, to present the results of the validation procedure, and to provide an outlook of potential future implementations into the state of the art in proving ground ecosystems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call