Abstract

Abstract. We developed an online instrument for measuring the oxidative potential (OP) of ambient particulate matter (PM) using the dithiothreitol (DTT) assay. The instrument uses a mist chamber (MC) to continuously collect the ambient PM2.5 in water, and then determines its DTT activity using an automated syringe pump system. The instrument was deployed at an urban site in the University of Illinois campus, and its field performance was evaluated by comparing the results with the offline DTT activity measurements of simultaneously collected PM-laden filters. The online DTT activity measurements correlated well with the offline measurements but were higher than both methanol (slope =1.08, R2=0.93) and Milli-Q water (slope =1.86, R2=0.86) extracts of the PM filters, indicating a better efficiency of the MC for collecting the water-insoluble fraction of PM. The hourly measurements of ambient PM2.5 OP were obtained by running the online instrument intermittently for 50 days with minimal manual assistance. The daytime DTT activity levels were generally higher than at night. However, a 4-fold increase in the hourly averaged activity was observed on the night of 4 July (Independence Day fireworks display). The diurnal profile of the hourly averaged OP during weekdays showed a bimodal trend, with a sharp peak in the morning (around 07:00 LT), followed by a broader afternoon peak which plateaus around 14:00 LT and starts subsiding at night (around 19:00 LT). To investigate the association of the diurnal profile of DTT activity with the emission sources at the site, we collected time-segregated composite PM filter samples in four different time periods of the day (morning, 07:00–10:00 LT; afternoon, 10:00–15:00 LT; evening, 15:00–19:00 LT; and night, 19:00–07:00 LT) and determined the diurnal variations in the redox active components (i.e., water-soluble Cu, Fe, Mn, organic carbon, elemental carbon, and water-soluble organic carbon). Based on this comparison, we attributed the daytime OP of ambient PM2.5 to the vehicular (both exhaust and non-exhaust) emissions and resuspended dust, whereas secondary photochemical transformation of primary emissions appear to enhance the OP of PM during the afternoon and evening period.

Highlights

  • We developed and field-tested an online instrument for the near real-time measurement of ambient PM2.5 OPex with an hourly resolution

  • The mist chamber (MC), equipped with a hydrophobic filter collects PM2.5 suspension by generating a fine mist of water, which scrubs the particles, both directly from air and from those collected onto the filter

  • The particulate matter (PM) suspension collected in MC is fed to an automated analytical system for the measurement of DTT activity

Read more

Summary

Introduction

Several recent studies have used the oxidative potential (OP) of ambient particulate matter (PM) as an indicator of the aerosol toxicity (Li et al, 2003; Knaapen et al, 2004; Steenhof et al, 2011; Bates et al, 2015; Tuet et al, 2016; Yang et al, 2016). The underlying hypothesis in these studies is that ambient particles upon inhalation can catalyze the generation of reactive oxygen species (ROS), creating a biochemical imbalance between oxidants and antioxidants which leads to a state of the cellular oxidative stress (Knaapen et al, 2004) This inherent property of the ambient PM to induce oxidative stress is supposed to be more closely associated with the PMrelated adverse health effects (such as congestive heart failure, myocardial infarction, asthma etc.) than conventionally used PM mass concentrations (Bates et al, 2015; Maikawa et al, 2016; Weichenthal et al, 2016; Yang et al, 2016; Abrams et al, 2017). The consumption of DTT over time, which is reported as the DTT activity or OP of the ambient PM, is assumed to be proportional to the concentration of redox active compounds in the PM sample (Kumagai et al, 2002; Cho et al, 2005)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call