Abstract

Amphibious (air and water) drones, capable of both aerial and aquatic operations, have the potential to provide valuable drone applications in aquatic environments. However, the limited range of wireless data transmission caused by the low antenna height on water and reflection from the water surface (e.g., 45 m for vertical half-wave dipole antennas with the XBee S2CTM, estimated using the two-ray ground reflection model) persists as a formidable challenge for amphibious systems. To overcome this difficulty, we developed a wireless data relay system for amphibious drones using the mesh-type networking functions of the XBeeTM. We then conducted field tests of the developed system in a large marsh pond to provide experimental evidence of the efficiency of the multiple-drone network in amphibious settings. In these tests, hovering relaying over water was attempted for extension and bypassing obstacles using the XBee S2CTM (6.3 mW, 2.4 GHz). During testing, the hovering drone (<10 m height from the drone controller) successfully relayed water quality data from the transmitter to the receiver located approximately 757 m away, but shoreline vegetation decreased the reachable distance. A bypassing relay test for vegetation indicated the need to confirm a connected path formed by pair(s) of mutually observable drones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call