Abstract

Acyclovir (ACV), a synthetic nucleoside derivative of purine, is one of the most potent antiviral medications recommended in the specific management of varicella-zoster and herpes simplex viruses. The molecularly imprinted polymer (MIP) was utilized to create an effective and specific electrochemical sensor using a straightforward photopolymerization process to determine ACV. The polymeric thin coating was developed using the template molecule ACV, a functional monomer acrylamide, a basic monomer 2-hydroxyethyl methacrylate, a cross-linker ethylene glycol dimethacrylate, and a photoinitiator 2-hydroxy-2-methyl propiophenone on the exterior of the glassy carbon electrode (GCE). Scanning electron microscopy, attenuated total reflectance-Fourier transform infrared spectroscopy, electrochemical impedance spectroscopy, and cyclic voltammetry were employed for the purpose of characterizing the constructed sensor (AM-ACV@MIP/GCE). Differential pulse voltammetry and a 5 mM ferrocyanide/ferricyanide ([Fe(CN)6]3-/4-) redox reagent were used to detect the ACV binding to the specific cavities on MIP. The study involves density functional theory (DFT) calculations, which were conducted to investigate template-functional monomer interactions thoroughly, calculate template-functional monomer interaction energies, and determine the optimal template/functional monomer ratio. DFT calculations were performed using Becke's three-parameter hybrid functional with the Lee-Yang-Parr correlation functional (B3LYP) method and 6-31G(d,p) basis set. The sensor exhibits linear performance throughout the concentration region 1 × 10-11 to 1 × 10-10 M, and the limit of detection and limit of quantification were 7.15 × 10-13 M and 2.38 × 10-12 M, respectively. For the electrochemical study of ACV, the sensor demonstrated high accuracy, precision, robustness, and a short detection time. Furthermore, the developed electrochemical sensor exhibited exceptional recovery in tablet dosage form and commercial human blood samples, with recoveries of 99.40 and 100.44%, respectively. The findings showed that the AM-ACV@MIP/GCE sensor would effectively be used to directly assess pharmaceuticals from actual specimens and would particularly detect ACV compared to structurally similar pharmaceutical compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call