Abstract

To develop a machine learning model and nomogram to predict the probability of persistent virus shedding (PVS) in hospitalized patients with coronavirus disease 2019 (COVID-19), the clinical symptoms and signs, laboratory parameters, cytokines, and immune cell data of 429 patients with nonsevere COVID-19 were retrospectively reviewed. Two models were developed using the Akaike information criterion (AIC). The performance of these two models was analyzed and compared by the receiver operating characteristic (ROC) curve, calibration curve, net reclassification index (NRI), and integrated discrimination improvement (IDI). The final model included the following independent predictors of PVS: sex, C-reactive protein (CRP) level, interleukin-6 (IL-6) level, the neutrophil-lymphocyte ratio (NLR), monocyte count (MC), albumin (ALB) level, and serum potassium level. The model performed well in both the internal validation (corrected C-statistic=0.748, corrected Brier score=0.201) and external validation datasets (corrected C-statistic=0.793, corrected Brier score=0.190). The internal calibration was very good (corrected slope=0.910). The model developed in this study showed high discriminant performance in predicting PVS in nonsevere COVID-19 patients. Because of the availability and accessibility of the model, the nomogram designed in this study could provide a useful prognostic tool for clinicians and medical decision-makers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.