Abstract

Nowadays, the search for increasing performances in turbomachinery applications has led to a growing utilization of active magnetic bearings (AMBs), which can bring a series of advantages thanks to their features: AMBs allow the machine components to reach higher peripheral speeds; in fact there are no wear and lubrication problems as the contact between bearing surfaces is absent. Furthermore, AMBs characteristic parameters can be controlled via software, optimizing machine dynamics performances. However, active magnetic bearings present some peculiarities, as they have lower load capacity than the most commonly used rolling and hydrodynamic bearings, and they need an energy source; for these reasons, in case of AMBs overload or breakdown, an auxiliary bearing system is required to support the rotor during such landing events. During the turbomachine design process, it is fundamental to appropriately choose the auxiliary bearing type and characteristics, because such components have to resist to the rotor impact; so, a supporting design tool based on accurate and efficient models of auxiliary bearings is very useful for the design integration of the Active Magnetic Bearing System into the machine. This paper presents an innovative model to accurately describe the mechanical behavior of a complete rotor-dynamic system composed of a rotor equipped with two auxiliary rolling bearings. The model, developed and experimentally validated in collaboration with Baker Hughes a GE company (providing the test case and the experimental data), is able to reproduce the key physical phenomena experimentally observed; in particular, the most critical phenomenon noted during repeated experimental combined landing tests is the rotor forward whirl, which occurs in case of high friction conditions and greatly influences the whole system behavior. In order to carefully study some special phenomena like rotor coast down on landing bearings (which requires long period of time to evolve and involves many bodies and degrees of freedom) or other particular events like impacts (which occur in a short period of time), a compromise between accuracy of the results and numerical efficiency has been pursued. Some of the elements of the proposed model have been previously introduced in literature; however the present work proposes some new features of interest. For example, the lateral and the axial models have been properly coupled in order to correctly reproduce the effects observed during the experimental tests and a very important system element, the landing bearing compliant suspension, has been properly modelled to more accurately describe its elastic and damping effects on the system. Furthermore, the model is also useful to characterize the frequencies related to the rotor forward whirl motion.

Highlights

  • Rotors equipped with active magnetic bearings (AMBs) technology have the advantage to allow the machine to reach high performances, but a secondary rolling bearings system is required, because magnetic bearings are not able to support the rotor in case of overload or failure of the energy supply system

  • The model is able to predict the behavior of the complete system during transient, steady and emergency conditions and it is composed of different submodels: the rotor submodel, which includes a FEM model to represent the lateral dynamic of the rotor and two rigid body models to reproduce axial and torsional rotor dynamics, and the auxiliary rolling bearing submodel, characterized by a combination of multibody and contact models able to represent the dynamics and the interactions of the auxiliary system elements

  • In case of a pure radial landing characterized by high radial friction coefficient, the rotor realizes a backward orbit; while in a combined axial-radial landing with a high axial thrust force value acting on the rotor, the tangential forces generated in the axial contact cause a rotor forward whirl

Read more

Summary

Introduction

Rotors equipped with AMBs technology have the advantage to allow the machine to reach high performances, but a secondary rolling bearings system is required, because magnetic bearings are not able to support the rotor in case of overload or failure of the energy supply system. Such auxiliary bearings system, whose main elements are catcher bearings, is directly engaged during rotor landings; in order to safely support the rotor, it must have very high mechanical and dynamical properties in order to guarantee the desired impact, thermal, and wear resistance. The model is able to predict the behavior of the complete system during transient, steady and emergency conditions (e.g., delevitation and landing phenomena) and it is composed of different submodels: the rotor submodel, which includes a FEM model to represent the lateral dynamic of the rotor and two rigid body models to reproduce axial and torsional rotor dynamics, and the auxiliary rolling bearing submodel, characterized by a combination of multibody and contact models able to represent the dynamics and the interactions of the auxiliary system elements.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call