Abstract

SummaryStudies have shown the effectiveness of providing supplemental energy dissipation in base‐isolated structures to reduce displacements at the isolation level. A previous analytical study demonstrated the benefits of providing this energy dissipation at a specified gap larger than the design displacement. The gap before engagement allows the base isolation system to meet performance criteria in varying levels of ground excitation. Use of this ‘gap damper’ device eliminates undesirable effects often exhibited with large amounts of supplemental damping at lower intensity motions. Using results from an analytical study, the primary purpose of this research was to develop devices for practical implementation. Development of the devices demanded simplicity, feasibility, economy, and reliability to be an effective option in building design and construction. Multiple designs were proposed, and a final design was chosen based on selection criteria and finite element analyses. The device was designed and tested in Auburn University's Structural Research Lab. Experimental results were compared with theoretical models to verify behavior and make necessary adjustments for a shake table experiment. The design parameters were selected to accommodate re‐use of the device for the shake table test. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.