Abstract

This paper details the development and experimental assessment of a friction-type connector, designed to transfer shear flow between the top flange of a fiber-reinforced polymer (FRP) tub girder and a composite concrete deck for bridge applications. In contrast with previously used bearing-type connectors, this system relies on a deformed FRP surface to transfer shear via direct interlock with the concrete deck. The connector is materially efficient, simple to fabricate, can be used with lower-grade structural or stainless-steel fasteners, and provides a high degree of interface stiffness. Six compression-shear specimens were tested to assess the connector fatigue resistance and ultimate connection strength. Additionally, two short beam specimens were tested in three-point bending, one of which was subjected to fatigue loading. Based on the compression-shear tests and short beam tests, the connection exhibited strength exceeding that predicted by AASHTO for frictional concrete-concrete connections. The connection strengths were significantly greater than the factored demand required by AASHTO for a typical model FRP bridge girder. The cyclic loading of the connection in both compression-shear and beam bending showed that connection stiffness and strength do not significantly degrade, due to the application of 1 × 106 to 6 × 106 cycles of traffic-induced factored fatigue load.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.