Abstract

• A new hybrid cooling concept for battery applications is proposed and experimentally tested in this study. • The results show a higher cooling efficiency and much better temperature uniformity over the battery pack. • The proposed concept provides more than 20% improvement in the cooling efficiency and 56% improvement in the temperature uniformity compared to the air cooling. • The innovative nature of the concept is that it achieves these significant improvements with no extra power from a normal air cooling method. • The coolants are environmentally friendly and can be released to the ambient environment after use. The electric vehicle (EV) technology is one of the most promising pathways to a future of green transportation. One of the keys to EV development is the electric battery. At the moment, Li-ion battery has been the most popular choice in the automotive industry for a variety of advantages. However, battery performance is strongly related to its working temperature, and the health of battery pack in the long-term is greatly affected by temperature uniformity. A novel hybrid cooling concept for battery applications is proposed and experimentally studied in this paper. The concept can utilize any combination of conductive, convective, and evaporative phase change cooling effects. This can be achieved with no extra power from a normal air cooling method using capillary effect as the driving force of the water coolant. But it can attain a higher cooling efficiency and better temperature uniformity. Furthermore, the A/C condensate can be recycled for use as the water coolant, which also adds no extra weight to the vehicle. The air and water coolants can be released to the ambient after usage without harming the environment. The results show that the proposed concept can improve both the cooling efficiency and temperature uniformity by more than 70% compared to the no-cooling baseline. Additionally, it has a 20% improvement in cooling efficiency and a 56% improvement in the uniformity compared to air cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.