Abstract
The neural crest, a uniquely vertebrate characteristic, gives rise to pigment cells, much of the peripheral nervous system, the craniofacial skeleton, and a plethora of other cell types. Classical embryological studies have revealed important details about the migratory pathways followed by these cells, and their subsequent differentiation into diverse derivatives. More recently, many aspects of the molecular cascade of events involved in neural crest induction and generation of these migratory cells have been revealed. Formation of the neural crest appears to involve a network of interactions whereby signaling molecules initiate the induction and, subsequently, the establishment of the neural plate border, which is marked by expression of a characteristic set of transcription factors designated as neural plate border-specifiers. These in turn regulate other transcription factors termed neural crest-specifiers, which control genes involved in neural crest delamination, the generation of migratory cells and ultimately the acquisition of appropriate fates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.