Abstract

In the present study, penetration and evaporation of the diesel sprays injected by a group of two closely spaced orifices (a group-hole nozzle) were investigated and compared with those of conventional single-hole nozzle sprays under various engine loads and wall-impinging conditions of direct-injection (DI) diesel engines. Both free and wall-impinging conditions were considered. The experiments were performed inside a constant-volume vessel under simulated ambient conditions for low and high engine loads of DI diesel engines. To investigate the effect of spray targeting, two impinging conditions (impingement angles of 45° and 90° with the same impingement distance) were applied. Geometry and liquid/vapour mass distributions of the evaporating diesel sprays were analysed using a laser absorption scattering (LAS) technique. Under a free spray condition, fuel evaporation of the group-hole nozzle spray was improved compared with that of the single-hole nozzle spray at low load conditions, while it showed simultaneous deterioration in fuel evaporation and spray tip penetration at high load conditions. Jet axes deflection of the two jets from the group-hole nozzle, which generated a dense liquid region at the central region of the spray, was responsible for this deteriorated evaporation at high load conditions. Under a vertical impingement condition (impingement angle of 90°), the group-hole nozzle spray showed simultaneous improvement in spray tip penetration and fuel evaporation at both low and high load conditions from strong momentum interaction of the two jets on the impingement wall. However, this improvement from the group-hole nozzle did not appear at an inclined wall-impingement condition (impingement angle of 45°) owing to weakened and delayed momentum interaction of the two jets. Both spray tip penetration and fuel evaporation of the group-hole nozzle spray were deteriorated at the inclined wall-impinging condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.