Abstract

Single-nucleotide polymorphisms (SNPs) and insertion-deletions (INDELs) are currently the important classes of genetic markers for major crop species. In this study, methods for developing SNP markers in rapeseed (Brassica napus L.) and their in silico mapping and use for genotyping are demonstrated. For the development of SNP and INDEL markers, 181 fragments from 121 different gene sequences spanning 86 kb were examined. A combination of different selection methods (genome-specific amplification, hetero-duplex analysis and sequence analysis) allowed the detection of 18 singular fragments that showed a total of 87 SNPs and 6 INDELs between 6 different rapeseed varieties. The average frequency of sequence polymorphism was estimated to be one SNP every 247 bp and one INDEL every 3,583 bp. Most SNPs and INDELs were found in non-coding regions. Polymorphism information content values for SNP markers ranged between 0.02 and 0.50 in a set of 86 varieties. Using comparative genetics data for B. napus and Arabidopsis thaliana, an allocation of SNP markers to linkage groups in rapeseed was achieved: a unique location was determined for seven gene sequences; two and three possible locations were found for six and four sequences, respectively. The results demonstrate the usefulness of existing genomic resources for SNP discovery in rapeseed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.