Abstract
Purpose: Ketoprofen is a nonsteroidal anti-inflammatory drug (NSAID) which when administered via an oral route displays significant gastro-intestinal side effects and has low skin permeation profile. The objective of the present work is to utilise nanostructured lipid carriers (NLCs) as carrier system for transdermal delivery of ketoprofen. 
 Methods: NLCs were prepared via hot homogenisation technique using bees wax, carnauba wax, glycerl monostearate (solid lipids), linseed oil (liquid lipid) and poloxamer188 (surfactant) and optimized using custom design via JMP. The responses evaluated were drug entrapment efficiency, particle size and drug release profile. The experimental design was evaluated for model fit with the assistance of ANOVA. The optimum formulations were characterized for particle size, zeta potential, SEM, DSC, FTIR and also drug content, entrapment efficiency, in- vitro drug release, ex-vivo drug release profile was studied.
 Results: The drug entrapment in the range of 34±0.03-95.06±0.01%. The drug release from the formulations over a 24 h study was found to be 80%±0.09 to 95%±0.06. The maximum desirability was found to be 0.91. The optimum formulation showed mean particle size of 425.8nm and a zeta potential of -45mV. SEM results revealed slightly agglomerated particles with uneven surfaces. The ex-vivo skin permeation of NLC optimized patch formulation exhibited a higher flux and permeability coefficient in comparison to the pure drug patch formulation and marketed gel (2.5%w/w) FTIR spectra assured the chemical and physical compatibility. 
 Conclusion: Transdermal delivery of ketoprofen via NLCs would be a promising approach for improving the skin permeation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.