Abstract

This work is devoted to the evaluation of multilead digital wavelet transform (DWT)-based electrocardiogram (ECG) wave delineation algorithms, which were optimized and ported to a commercial wearable sensor platform. More specifically, we investigate the use of root-mean squared (RMS)-based multilead followed by a single-lead online delineation algorithm, which is based on a state-of-the-art offline single-lead delineator. The algorithmic transformations and software optimizations necessary to enable embedded ECG delineation notwithstanding the limited processing and storage resources of the target platform are described, and the performance of the resulting implementations are analyzed in terms of delineation accuracy, execution time, and memory usage. Interestingly, RMS-based multilead delineation is shown to perform equivalently to the best single-lead delineation for the 2-lead QT database (QTDB), within a fraction of a sample duration of the Common Standards for Electrocardiography (CSE) committee tolerances. Finally, a comprehensive evaluation of the energy consumption entailed by the considered algorithms is proposed, which allows very relevant insights into the dominant energy-draining functionalities and which suggests suitable design guidelines for long-lasting wearable ECG monitoring systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.