Abstract

Fish nocardiosis is a chronic disease mainly caused by Nocardia seriolae, which occurs in a variety of economically cultured freshwater and marine fish. Studies have shown that DNA vaccine is an effective treatment to protect fish from bacterial infection. In our previous experiment, an in vivo-induced gene of N. seriolae, encoding phosphoketolase (PK) family protein, was identified by in vivo-induced antigen technology. In the present study, the antigenic gene encoding PK family protein was analyzed by bioinformatics and further inserted into the eukaryotic expression vector pcDNA3.1-myc-his-A for DNA vaccine development. The immunological effects of pcDNA-PK DNA vaccine were assessed in hybrid snakehead (Channa maculata ♀ × Channa argus ♂), showing induction in several serum enzyme activity parameters (including LZM, SOD, ACP and AKP), increasing in specific-antibody IgM levels, as well as up-regulation in six immune-related genes (CD4, CD8α, TNFα, IL-1β, MHCIα and MHCIIα). Moreover, an immune-protection with a relative survival rate was provided at 53.82 % following artificial challenge with N. seriolae in vaccinated fish in comparison to the control group. In summary, these results indicate that pcDNA-PK DNA vaccine could boost strong immune responses in hybrid snakehead and show preferably protective efficacy against N. seriolae, which may be applied in aquaculture to control fish nocardiosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.