Abstract

Therapeutic efficacy of antineoplastic agents possessing a selective target to the nucleus of the cancer cells could be enhanced through novel formulation approaches. Thus, towards improvement of anticancer potential of icariin (ICA) on pancreatic cancer, the drug was entrapped into the polymeric poly lactic-co-glycolic acid (PLGA) with polyethylene glycol (PEG) as diblock copolymer. Optimization of the formulation was done using Statgraphics software to standardize percentages of PEG-PLGA and tween 80 (TW80) to obtain the smallest particle size. The optimized formulation was found to be in nanometer size and low PDI (0.321). Optimized formula enhanced cytotoxicity and apoptotic potential, compared with ICA-raw, against pancreatic cancer cell lines (aspc-1). The entrapment efficiency of the polymeric micelles was 72.34 ± 2.3% with 93.1 ± 6.5% release of ICA within 72h. There was a twofold increase in apoptosis and sevenfold increase in necrosis of aspc-1 cells when incubated with raw ICA compared to control cells. Further, loss of mitochondrial membrane potential (⁓50-fold) by the ICA-loaded PMs and free drug compared to control cells was found to be due to the generation of ROS. Findings of cell cycle analysis revealed the significant arrest of G2-M phase of aspc-1 cells when incubated with the optimized formulation. Simultaneously, a significantly increased number of cells in pre-G1 revealed maximum apoptotic potential of the drug when delivered via micellar formulation. Finally, upregulation of caspase-3 established the superiority of the PMs approach against pancreatic cancer. In summary, the acquired results highlighted the potentiality of PMs delivery tool for controlling the growth of pancreatic cancer cells for improved efficacy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call