Abstract

Among renewable energy technologies, wind energy features one of the best possibilities for large-scale integration into power systems. However, there are specific restrictions regarding the installation areas for this technology, thus resulting in a growing, yet restricted, rate of penetration of the technology because of the limited viable sites onshore or in shallow waters. In this context, the use of offshore semi-submersible platforms appears as a promising option, which additionally enables the incorporation of other elements, such as wave energy converters or aquaculture. Nevertheless, this kind of offshore facility involves interactions between platform movements and the wind turbine, increasing the complexity of the system, causing traditional control techniques to not be able to fully cope with the dynamics of the system, and thus limiting the efficiency of energy extraction. On the contrary, the use of intelligent control techniques is an interesting option to take full account of the said interactions and to improve energy capture efficiency through the control of the pitch of the blades, especially under turbulent, above-rated wind profiles. This work presents an original fuzzy logic controller that has been validated by comparing it with previously validated controllers, following a developed methodology that allows comparison of controllers for wind turbines in semi-submersible platforms using performance indexes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.