Abstract

Internet of Things that process tremendous confidential data have difficulty performing traditional security algorithms, thus their security is at risk. The security tasks to be added to these devices should be able to operate without disturbing the smooth operation of the system so that the availability of the system will not be impaired. While various attack detection systems can detect attacks with high accuracy rates, it is often impos-sible to integrate them into Internet of Things devices. Therefore, in this work, the new Distributed Denial-of-Service (DDoS) detection models using feature selection and learn-ing algorithms jointly are proposed to detect DDoS attacks, which are the most common type encountered by Internet of Things networks. Additionally, this study evaluates the memory consumption of single-based, bagging, and boosting algorithms on the client-side which has scarce resources. Not only the evaluation of memory consumption but also development of ensemble learning models refer to the novel part of this study. The data set consisting of 79 features in total created for the detection of DDoS attacks was minimized by selecting the two most significant features. Evaluation results confirm that the DDoS attack can be detected with high accuracy and less memory usage by the base models com-pared to complex learning methods such as bagging and boosting models. As a result, the findings demonstrate the feasibility of the base models, for the Internet of Things DDoS detection task, due to their application performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.