Abstract

Leg length discrepancy (LLD) is a common problem that can cause long-term musculoskeletal problems. However, measuring LLD on radiography is time-consuming and labor intensive, despite being a simple task. To develop and evaluate a deep-learning algorithm for measurement of LLD on radiographs. In this Health Insurance Portability and Accountability Act (HIPAA)-compliant retrospective study, radiographs were obtained to develop a deep-learning algorithm. The algorithm developed with two U-Net models measures LLD using the difference between the bilateral iliac crest heights. For performance evaluation of the algorithm, 300 different radiographs were collected and LLD was measured by two radiologists, the algorithm alone and the model-assisting method. Statistical analysis was performed to compare the measurement differences with the measurement results of an experienced radiologist considered as the ground truth. The time spent on each measurement was then compared. Of the 300 cases, the deep-learning model successfully delineated both iliac crests in 284. All human measurements, the deep-learning model and the model-assisting method, showed a significant correlation with ground truth measurements, while Pearson correlation coefficients and interclass correlations (ICCs) decreased in the order listed. (Pearson correlation coefficients ranged from 0.880 to 0.996 and ICCs ranged from 0.914 to 0.997.) The mean absolute errors of the human measurement, deep-learning-assisting model and deep-learning-alone model were 0.7 ± 0.6mm, 1.1 ± 1.1mm and 2.3 ± 5.2mm, respectively. The reading time was 7h and 12min on average for human reading, while the deep-learning measurement took 7min and 26s. The radiologist took 74min to complete measurements in the deep-learning mode. A deep-learning U-Net model measuring the iliac crest height difference was possible on teleroentgenograms in children. LLD measurements assisted by the deep-learning algorithm saved time and labor while producing comparable results with human measurements.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.