Abstract

Production of proteins is an important issue in protein science and pharmaceutical studies. Numerous protein expression systems using living cells and cell-free methods have been developed to date. In these systems, a promising strategy for improving the success rate of obtaining soluble proteins is the attachment of various tags into target proteins based on empirical rules. This paper presents a method for the production of data-driven designed tags (DDTs) based on highly frequent sequence property patterns in an experimentally assessed protein solubility dataset in a wheat germ cell-free system. We constructed seven proteins combined with 12 kinds of DDTs (six for enhancing solubility and six for insolubility) at the N-terminal region as tags. Then we investigated their behavior using SDS-PAGE. Results show that three and four proteins respectively showed a trend toward solubilization and insolubilization, which indicates the possibility that the theoretically designed sequence can control protein solubility.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.