Abstract
The present work was aimed to develop and evaluate controlled porosity osmotic pump (CPOP) tablets of zidovudine-lamivudine combination for the treatment of AIDS. The tablets were prepared by wet granulation method incorporating drug, various excipients, controlled release polymer hydroxyl propyl methyl cellulose (HPMCE5M LV) and osmogen (Mannitol) in the core. The CPOP tablets consist of an osmotic core coated with a micro porous membrane made up of cellulose acetate (CA) which is incorporated with sorbitol as porogen. Prior to compression the prepared granules were evaluated for pre compression parameters such as angle of repose, bulk density, tapped density, Carr’s index and Hausner’s ratio. After compression the prepared granules were evaluated for thickness, coat thickness, hardness, weight variation, friability, drug content, diameter, in vitro drug release study and scanning electron microscopy (SEM) study. The release kinetics for different formulations were analyzed using zero order model equation, first order model equation, Higuchi model equation, Korsmeyer Peppas model equation and Hixson-Crowell equation. The optimized formulation of drug release was independent of pH, agitation intensity, but dependent on the osmotic pressure of the release media. FTIR and DSC study revealed that there was no interaction between drug and excipients. Formulations subjected to stability testing (at 40±2oC/75±5% RH) as per ICH guidelines for three months indicated stability with no significant changes in thickness, hardness, weight variation, friability, drug content and dissolution profiles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.