Abstract

We constructed energetic models of habitat use for 82–322 g rainbow trout (Oncorhynchus mykiss) in a large regulated river, and 8–28 g Colorado River cutthroat trout (O. clarki pleuriticus) in a small headwater stream, to determine if observed summer habitat use by these species could be attributed to net energy acquisition, and to develop habitat suitability criteria based on net energy gain. Metabolic models of energy expenditure were derived from literature sources, but measurements of energy availability were site-specific. From the energy models, we assigned a suitability value of 1.0 to the entire range of velocities where positive net energy gains were predicted, and a suitability value of zero to velocities where negative net energy gains were predicted. Predicted net energy gain velocities were compared with observed velocities used by each species. For rainbow trout, the energetic model predicted energetically profitable velocities ranging from 5 to 45 cm s−1. Predicted velocities were similar to velocities used by rainbow trout. This indicated that rainbow trout, as a group, were using energetically profitable stream locations, but some rainbow trout used non-profitable velocities. For Colorado River cutthroat trout, the energetic model predicted energetically profitable velocities ranging from 5 to 45 cm s−1; however, Colorado River cutthroat trout used significantly lower velocities than predicted. The dissimilarity between velocities predicted and used by Colorado River cutthroat trout may be attributed to their inability to utilize energetically profitable velocities available in the stream because of depth restrictions The results suggest that the predictive abilities of energetic models vary between streams because of differences in depth and velocity availability. © 1997 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call