Abstract

Background Tiagabine, an anticonvulsant drug, has t1/2: 7–9 h (low); protein binding: 96%; water solubility: 22 mg/l; it also acts as a selective GABA reuptake inhibitor. Side effects include abdominal pain, pharyngitis, suicidal thoughts, and sudden unexpected death. Aim The aim of this work was to formulate nanosized Bio-Flexy films using a novel biopolymer isolated from Ananas cosmosus fruit pulp containing tiagabine as a model drug. The soft palate drug delivery helps bypass first-pass metabolism in the liver and presystemic elimination in the gastrointestinal tract is avoided. The biopolymer isolated from A. cosmosus was used to prepare Bio-Flexy films because of its biodegradability and biocompatibility, and because it is nontoxic and nonirritant, and nonreactive on soft palatal surfaces. Physicochemical characterization of the biopolymer showed its inbuilt property as film forming ability and mucoadhesivity which was confirmed, screened and authenticated. Materials and methods Bio-Flexy films were prepared using the solvent casting technique. The drug to polymer ratio was chosen at five levels for A. cosmosus FPA1–FPA5 with varying ratios of biopolymer from 1 to 10 and 1% of nanosized tiagabine and compared with sodium carboxyl methyl cellulose standard films. Bio-Flexy films were evaluated for thickness, surface pH, weight uniformity, folding endurance, in-vitro release, and stability studies. Results The percentage yield of the A. cosmosus biopolymer was found to be 0.972±0.008%. The thickness of the formulated Bio-Flexy films ranged from 0.041 to 0.091 mm, the folding endurance was 65–95, the surface pH was 7.01±0.02 to 7.01±0.01, and weight uniformity was 0.001±0.02 to 0.032±0.01. Conclusion On the basis of all the above-mentioned evaluation parameters, formulation FPA3 [containing Tiagabine: Ananas cosmosus biopolymer (1:5)] was selected as the best film as results of an in-vitro release study showed prolonged durationof 48 h in prolonged manner. The best film showed R2=0.969 release pattern by Peppas–Korsmeyer, as the Best Fit model, followed by anomalous transport release mechanism, which was confirmed by using BITS Software 1.12. Stability study showed stable Bio-Flexy films with no significant change in physical appearance and stable pH. Prepared formulations of tiagabine-loaded Bio-Flexy films are suitable for soft palatal delivery.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call