Abstract

Non-invasive early detection and differentiation grading of lung adenocarcinoma using computed tomography (CT) images are clinically important for both clinicians and patients, including determining the extent of lung resection. However, these are difficult to accomplish using preoperative images, with CT-based diagnoses often being different from postoperative pathologic diagnoses. In this study, we proposed an integrated detection and classification algorithm (IDCal) for diagnosing ground-glass opacity nodules (GGN) using CT images and other patient informatics, and compared its performance with that of other diagnostic modalities. All labeling was confirmed by a thoracic surgeon by referring to the patient's CT image and biopsy report. The detection phase was implemented via a modified FC-DenseNet to contour the lesions as elaborately as possible and secure the reliability of the classification phase for subsequent applications. Then, by integrating radiomics features and other patients' general information, the lesions were dichotomously reclassified into "non-invasive" (atypical adenomatous hyperplasia, adenocarcinoma in situ, and minimally invasive adenocarcinoma) and "invasive" (invasive adenocarcinoma). Data from 168 GGN cases were used to develop the IDCal, which was then validated in 31 independent CT scans. IDCal showed a high accuracy of GGN detection (sensitivity, 0.970; false discovery rate, 0.697) and classification (accuracy, 0.97; f1-score, 0.98; ROAUC, 0.96). In conclusion, the proposed IDCal detects and classifies GGN with excellent performance. Thus, it can be suggested that our multimodal prediction model has high potential as an auxiliary diagnostic tool of GGN to help clinicians.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call