Abstract

In order to avoid the inherent aerodynamic difficulties of the conventional fume hood, an innovative design--the 'air curtain-isolated fume hood' is developed. The new hood applies a specially designed air curtain (which is generated by a narrow planar jet and a suction slot flow at low velocities) across the sash plane. The hood constructed for the study is full size and transparent for flow visualization. The aerodynamic characteristics are diagnosed by using the laser-light-sheet-assisted smoke flow visualization method. Four characteristic air-curtain flow modes are identified in the domain of jet and suction velocities when the sash remains static. Some of these characteristic flow modes have much improved flow patterns when compared with those of the conventional fume hoods. From the viewpoint of the aerodynamics and mass transport, the results indicate that the air curtain properly setup across the sash opening allows almost no sensible exchange of momentum and mass between the flowfields of the cabinet and the outside environment. Two standard sulfur hexafluoride (SF6) tracer gas concentration measurement methods following the ANSI/ASHRAE 110-1995 standard and the prEN14175 protocol for static test are employed to examine the contaminant leakage levels. Results of the rigorous examinations of leakage show unusually satisfactory hood performance. The leakage of the tracer gas can approach almost null (<0.001 p.p.m.) if the jet and suction velocities are properly adjusted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call