Abstract
Advanced Microwave Sounding Unit-A (AMSU-A) and Microwave Humidity Sounder (MHS) data have been widely assimilated in operational forecasting systems. However, effective distinction between cloudy and clear-sky data is still an essential prerequisite for the assimilation of microwave observations. Cloud detection over the Tibetan Plateau has long been a challenge owing to the influence of low temperatures, terrain height, surface vegetation, and inaccurate background fields. Based on the variations in the response characteristics of different channels of AMSU-A to clouds, five AMSU-A window and low-peaking channels (channels 1–4 and 15) are chosen to establish a cloud detection index. Combined with the existing MHS cloud detection index, a cloud detection scheme over the Tibetan Plateau is proposed. Referring to VISSR-II (Stretched Visible and Infrared Spin Scan Radiometer-II) and CALIPSO (The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) cloud classification products, the detection rate of cloudy data and the rejection rate of clear-sky data under different cloud index thresholds are evaluated. Results show that the new cloud detection scheme can identify more than 80% of cloudy data on average, but this decreases to 72% for area with terrain higher than 5 km, and the false deletion rate remains stable at 45%. The detection rates of mixed clouds and cumulonimbus are higher than 90%, but it is lower than 50% for altostratus with an altitude of about 7–8 km. Comparative analysis shows that the new method is more suitable for areas with terrain higher than 700 m. Based on the cloud detection results, the effects of terrain height on the characteristics of observation error and bias are also discussed for AMSU-A channels 5 and 6.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.