Abstract

Conventional oral dosage forms may not always be optimal especially for those patients suffering from dysphasia or difficulty swallowing. Development of suitable oral thin films (OTFs), therefore, can be an excellent alternative to conventional dosage forms for these patient groups. Hence, the main objective of the current investigation is to develop oral thin film (OTF) formulations using novel solvent-free approaches, including additive manufacturing (AM), hot-melt extrusion, and melt casting. AM, popularly recognized as 3D printing, has been widely utilized for on-demand and personalized formulation development in the pharmaceutical industry. Additionally, in general active pharmaceutical ingredients (APIs) are dissolved or dispersed in polymeric matrices to form amorphous solid dispersions (ASDs). In this study, acetaminophen (APAP) was selected as the model drug, and Klucel™ hydroxypropyl cellulose (HPC) E5 and Soluplus® were used as carrier matrices to form the OTFs. Amorphous OTFs were successfully manufactured by hot-melt extrusion and 3D printing technologies followed by comprehensive studies on the physico-chemical properties of the drug and developed OTFs. Advanced physico-chemical characterizations revealed the presence of amorphous drug in both HME and 3D printed films whereas some crystalline traces were visible in solvent and melt cast films. Moreover, advanced surface analysis conducted by Raman mapping confirmed a more homogenous distribution of amorphous drugs in 3D printed films compared to those prepared by other methods. A series of mathematical models were also used to describe drug release mechanisms from the developed OTFs. Moreover, the in vitro dissolution studies of the 3D printed films demonstrated an improved drug release performance compared to the melt cast or extruded films. This study suggested that HME combined with 3D printing can potentially improve the physical properties of formulations and produce OTFs with preferred qualities such as faster dissolution rate of drugs.

Highlights

  • IntroductionThose who have difficulty swallowing or dysphasia may often refuse conventional oral dosages such as tablets or capsules objectively [1,2,3]

  • Since thermal process was was utilized in thein current investigation to achieve achieve molecular level mixing and film forming, a thermal degradation of the drug or molecular level mixing and film forming, a thermal degradation of the drug or excipients excipients in the formulations mightdue happen due to the high processing temperature used in theused formulations might happen to the high processing temperature of the of the casting, extrusion, and printing

  • The amorphous solid dispersions were successfully prepared via HME and 3D printing technologies, which improved the drug release rate from the hydrophilic polymeric matrices

Read more

Summary

Introduction

Those who have difficulty swallowing or dysphasia may often refuse conventional oral dosages such as tablets or capsules objectively [1,2,3]. Opening capsules or crushing the tablets could be alternative approaches for such patients to administer conventional oral dosages; such approaches might be against the original intention of some specific formulations like coated, controlled released, or multilayer tablets. Even worse, this might result in ineffectiveness and toxicity, and was not recommended by Pharmaceutics 2021, 13, 1613.

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call