Abstract

The advent of high-speed, lightweight, and durable sensor technologies opens new possibilities for field monitoring applications. In particular, under natural or man-made loading conditions, applying these new technologies to the monitoring of building interiors may substantially help rescue and reconnaissance crews during postevent evaluations. To test such a methodology, in this paper, we develop a specialized network of conventional analog and digital (camera) sensors and use them in monitoring nonstructural components subjected to vibration loading within a demonstration building structure. A full-scale vibration experiment is conducted with a research team from the University of California, Los Angeles, on a vacant structure damaged during the 1994 Northridge Earthquake. The building of interest is a four-story office building located in Sherman Oaks, CA. The investigation has two primary objectives: (1) to characterize the seismic response of an important class of equipment and building contents and (2) to study the applicability of tracking the response of these equipment and contents using arrays of image-based monitoring systems. In this paper, we describe the experimental field setup, including the analog and camera sensor systems and the networking hardware used to collect data, present the testing matrix, and sample the processed analog data results. We summarize the difficulties encountered in the field implementation of these types of monitoring systems while highlighting their potential benefits. In a companion paper, we present the analysis methodology applied to the image sequences collected and summarize needs for future work if such systems are to be robustly employed in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.